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Abstract. A new method of detcrmining interface electronic structure is described. Only a 
few layers on either side of the interface need to be explicitly considered. Each substrate is 
included via an embedding potential derived from the bulk Green function, which is added 
to the interface Hamiltonian. The technique allows localised interface states as well as the 
continuum of bulk states to be studied. Results are presented for the AI-Ni(001) interface, 
found self-consistently using the linearised augmented plane wave method. 

1. Introduction 

The changes in electronic structure which occur at the interface between two bulk media 
are important for determining the properties of electronic devices and point contacts 
and, more recently, for understanding semiconductor or metallic superlattices. Nearly 
perfect interfaces can be grown using techniques such as molecular beam epitaxy or 
chemical vapour deposition. Owing to the technological importance of these interfaces, 
it is useful to calculate their electronic properties from first principles, in order to give 
insight into their physical properties. The electronic structure of a superlattice can be 
calculated directly using ordinary band-structure techniques (Bylander and Kleinman 
1987), although computational restraints limit the length of unit cell which can be treated. 
Here we are interested in the properties of a single interface, which can only be treated 
with conventional band-structure methods by using a relatively long unit cell, in order 
to reduce the interactions between neighbouring interfaces. This paper presents a new 
method of determining interface electronic structure, in which the effect of the substrates 
is included via embedding potentials added to the Hamiltonian in the interface region. 
The results of including these embedding potentials is to ensure that the interface 
wavefunction matches correctly the substrate wavefunctions. Using the embedding 
potential method, only one or two layers on either side of the interface need to be 
considered explicitly. Moreover, this new method reproduces the correct spectrum of 
states, both for the continuum of bulk states and for localised interface states. 

This embedding method was introduced by Inglesfield (1981) and applied to surface 
electronic structure by Benesh and Inglesfield (1984), and in this paper it is generalised 
to the case of an interface between two bulk media. We also describe the details of the 
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interface calculation in which we use the linearised augmented plane-wave (LAPW) basis 
set in the interface region. The full potential is used in the interface region including 
warping terms, and its construction in the self-consistency cycle is described. Finally, 
we shall apply the technique to the AI-Ni(001) interface. Densities of states at fixed 
wavevector parallel to the interface, and charge densities are presented. Perhaps the 
most significant result is our observation of localised states in the Ni, which decay into 
the A1 band gap. 

2. Interface embedding 

The basic principle of the embedding method is to consider explicitly only the finite 
region around the interface in which the potential differs significantly from the bulk, 
with each substrate being included in the Hamiltonian via an embedding potential term. 
Initially we derive a variational principle for the whole system (figure 1) in terms of an 
arbitrary trial wavefunction @, defined explicitly in the interface (region 3), but in the 
two substrates (regions 1 and 2) we take the trial wavefunction to be exact solutions of 
the Schrodinger equation at some energy E ,  namely Y and Y2 in the respective regions 
1 and 2. Y and Y2 match in amplitude @ over S1 and Sz, respectively. Note that the first 
derivative with respect to z of the total trial wavefunction is in general discontinuous 
across S1 and S,. The expectation value of the energy is given by 

E = ( ~ l H l ~ ) / ( ~ l ~ )  (1) 
where Y is the total trial wavefunction, and H = -to2 + V(r). Hence 

E = (j3 @*H@ d 3 r  + E Y:Yl d 3 r  + E Jz Y;Y2 d 3 r  - $(Zl + 1 2 ) )  i 
where 

and 

@ *  - a@ - @ *  -1 a y 2  d2rs ,  
= IS* i az az (4) 

The fourth and fifth terms in (2) arise owing to the discontinuity in gradient of the 
wavefunction at S1 and S 2 .  Note the sign change in the fifth term, to account for the 
opposite direction of n2 to nl. 

We require a relationship between the solutions of the Schrodinger equation in the 
three regions. The results for substrate 1 will be derived, those for substrate 2 following 
in a similar manner. Writing G?(r,  r’) as the Green function in substrate 1, which has 
zero normal derivative on S1, and using Green’s theorem, gives (Inglesfield 1981) 
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Figure 1. Interface region 3 is embedded onto substrate regions 1 and 2. 

Inverting ( 5 )  leads to 

where we have used the property that @ = Y on SI. 

1981) 
The normalisation of Y in region 1 is required. This is readily shown to be (Inglesfield 

The results for the other substrate (region 2) are identical, except that the normal 
derivative of Y2 is in the direction of n2. Using (6) and (7) and their equivalents for 
region 2 gives 

'where 

and 

with similar results for Z; and Z'; . 
The energy is now given in terms of @, the trial wavefunction in the interface. We 

derive a Schrodinger equation from (8) by minimising the total energy with respect to 
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small changes in @. This leads to 

The wavefunction @ given by this Schrodinger equation is a solution of the Hamiltonian 
in the interface region, and has the correct logarithmic derivatives on SI and Sz. The 
energy derivative terms correct the embedding potentials, so that to first order they are 
applicable to the energy E. 

We choose to calculate the Green function in the interface region, rather than the 
individual wavefunctions, as we are interested in the continuum of bulk states, as well 
as localised states. This Green function is calculated at the same energies as the substrate 
embedding potentials; so E = E in (11). Also. expanding the interface Green function 
in terms of some basis {q l } ,  as 

and 
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Substrate 

603 

Figure 2. Illustration of the actual embedding surface S, and the shifted embedding surface 
e , .  

so 

If the interface has two-dimensional periodicity, the problem can be reduced to the 
solution of the Schrodinger equation in one unit cell of this lattice, allowing us to define 
a Bloch embedding potential as 

where the {RI} are the two-dimensional direct lattice vectors. 
From figure 2 we see that SI and S 2  are not flat surfaces, which is inconvenient as it 

means that the integrals in (14) are evaluated over awkwardly shaped regions. However, 
as described by Inglesfield (1981), the embedding potentials can be calculated over the 
shifted embedding surfaces c l  and c2, provided that a constant potential is included 
between the actual and shifted embedding surfaces. The embedding potentials are 

kx T k x  T 

I G'# 

i o )  ib l  

Figure 3. Wavevector and reciprocal-lattice vectors for (G;)-' at (a )  <, and ( b )  c2. 
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chosen over C1 and f 2  to give logarithmic derivatives on these surfaces which, when the 
Schrodinger equation is integrated through the constant potential in the shaded region 
in figure 2, produce the required logarithmic derivatives on SI and S2 .  In future the 
embedding potentials will refer to those which are calculated over c1 and c 2 ,  respectively. 
These embedding potentials are conveniently calculated from the reflection properties 
of the bulk substrates (Benesh and Inglesfield 1984) and are given by 

(Go)-' = y(I - R)/2(1 + R) (18) 
where y is the matrix of wavevectors of scattered waves and R is the reflection matrix of 
the relevant substrate. 

The embedding potential for a given material appropriate to a substrate on the right 
can be used on the left with no changes, assuming certain symmetry restrictions. To see 
this, consider the embedding potential (Gi ) - '  at some two-dimensional wavevector 
K = ( K x ,  KY) ,  expanded in terms of a set of reciprocal lattice vectors {G = (Gx, G,)} at 
the right substrate. Figure 3(a )  shows the geometry for two reciprocal lattice vectors G 
and G ' ,  looking onto the right embedding surface, with a set of axes x-y defined in the 
interface slab. Now, looking onto the left embedding surface, it is clear that we must 
evaluate (Go)-' at (K,, - K,)) in terms of {(G,, -GY)} as in figure 3 ( b ) .  Now (Go)-' for 
( K x ,  -K,) expanded in {(G,, -Cy)} is the same as (Go)-' for (K,, K,) expanded in 
{(Gx, Gy)} if there is a mirror plane perpendicular to (0 ,  1). Thus we can use the embed- 
ding potentials as calculated for f l 7  at f 2  with no change, as long as the lattice has the 
required mirror plane. Lattices not having this symmetry could obviously be handled by 
modifying the construction of the embedding potentials. 

3. Method of solution 

Firstly, the geometry involved in the interface region is shown in figure 4. The interface 
is of width D.  5' and c2 are the embedding planes, which are usually taken to lie half- 
way between the layers of atoms in the bulk substrate, thus ensuring charge neutrality 
in the interface slab, which is important when constructing the new electrostatic potential 
in the self-consistent process. The basis to be used in the wavefunction expansion is 
defined over -D/2 to +D/2, in order that the wavefunction has sufficient variational 
freedom over the surfaces C1 and f 2 ,  to assume the correct logarithmic derivatives. 

Figure 4. Geometry used in the interface. 
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The chosen basis set is the LAPW basis (Andersen 1975, Krakauer et a1 1979), which 
is flexible and accurate. The LAPW basis is constructed around the simple muffin-tin form 
of potential, although the full potential is used to evaluate the matrix elements. In the 
interstitial region the LAPWS are defined to be 

cos(k,,z) 

sin(k,z) 

where 

K , = K + G ,  

k, = nn/D 

Q = A D .  

G ,  are the two-dimensional reciprocal-lattice vectors, and A is the area of the two- 
dimensional unit cell. The upper term in (19) is for n even, and the lower term for n odd. 
Inside the muffin-tin spheres, the scalar-relativistic equation is solved (Koelling and 
Harmon 1977), which is the Dirac equation with spin-orbit terms removed. The LAPW 
in each sphere (Y is taken to be a linear combination of the radial wavefunction ula and 
its energy derivative Lila, multiplied by the spherical harmonics: 

TheAI,, and Bl,, are chosen so that the LAPW is continuous in value and first derivative 
across the sphere boundary. 

The actual potential in the interface includes non-spherical components inside the 
muffin tin potentials, which we expand in the form 

~ ( r )  = 2 [Vf,m(r) c o s ( m ~ )  + VS,m(r> s in(m~7>1~/ ,m(o) .  (21) 
1,maO 

In the interstitial region we have the ‘warping’ potential 
r 

+ 2’ [V,, exp(+G,z) + V,- exp(-Gmz)] exp(iG, . R ) .  (22) 
m 

The prime on the second sum excludes m = 0. This is the general solution of Poisson’s 
equation, with the second, third and fourth terms being included owing to the absence 
of periodicity in the z direction. 

The matrix elements between the LAPWS are similar to the surface case (Benesh and 
Inglesfield 1984, Inglesfield and Benesh 198S), although without the vacuum terms of 
course. Inside the muffin tins, they are identical. The interstitial elements are modified 
by the introduction of a second embedding plane c2 instead of the surface-vacuum 
interface at - 0 1 2 ,  and there is also a second term arising from the embedding potential 
at c2. The interstitial matrix elements of the warping potential are the most difficult to 
evaluate. Initially, all volume integrals are performed over the entire region from c2 to 
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c1, and over the whole of the muffin-tin spheres. However, in reality, the warping 
potential must only be included within the volume bounded by the true embedding 
surfaces SI and S 2  defined previously. Referring to figure 4, we see that the substrate 
and interface spheres may intersect the shifted embedding planes cl and c2; so the 
previous volume integrals are modified by adding or subtracting the relevant muffin-tin 
cap integrals as appropriate, leaving us with the matrix elements of the warping potential 
between S1 and S 2  as required (figures 1 and 2). 

Once the matrix H - ES is formed, it is inverted to obtain the interface Green 
function (equation (16)). From this, the local density of states is easily obtained via 

o(r, E )  = (l/n) Im[G(r, Y, E + i ~ ) ] .  

The energy has a small imaginary part to shift it off the real axis, where the Green 
function has a branch cut. The density of states in a given region is obtained by integrating 
(23) over the required volume, and the charge density is obtained by integrating (23) 
over an energy range from below the valence bands to the Fermi energy, using contour 
integration. The core charge density, which is derived separately by solving the fully 
relativistic Dirac equation, is then added to the muffin-tin charge density, to form the 
total charge density in the muffin tins, expanded in the same form as the potential, given 
in equation (21). A plane-wave expansion is used for the charge density in the interstitial 
region. 

The new potential for the second part of the self-consistent process is constructed in 
a similar manner to that described by Inglesfield and Benesh (1988) for the case of 
surfaces. To find the Hartree potential, the charge density is transformed to a new 
pseudo-charge density as described by Weinert (1981), which is the same as the actual 
charge density in the interstitial region and has the same multipole moments inside the 
muffin tins. Hence it gives rise to the same potential in the interstitial region, but it can 
be readily Fourier transformed, thus allowing the Fourier coefficients of the interstitial 
potential to be determined via Poisson’s equation. After the interstitial potential has 
been evaluated, the construction of the potential inside the muffin tins becomes a 
boundary value problem. 

When constructing the interstitial potential, it is necessary to include two boundary 
conditions, and these are taken to be the value of the potential at either side of the 
interface, which by definition are the same as in the bulk. Now, at an interface there is 
always a potential shift which is determined for metallic interfaces by the requirement 
that the Fermi level is constant across the interface in equilibrium. Knowing the position 
of the Fermi energy relative to the muffin-tin zero allows us to calculate the potential 
boundary conditions at the outset. For non-metallic junctions, we can either place the 
Fermi level at the centre of the band gap as a first approximation or use the experimentally 
measured potential shift if available. The coefficients of the interstitial potential 
(equation (22)) are adjusted using a least-squares fitting procedure to give the correct 
electrostatic shift. After the electrostatic potential has been constructed in this way, the 
exchange-correlation potential, evaluated in the local density approximation (Kohn 
and Sham 1965), is added. Once the new potential has been constructed, it is mixed with 
the input potential for that iteration, and the resulting potential is then used as the input 
potential for the next iteration. The alternating mixing factor scheme of Dederichs and 
Zeller (1983) is used once partial convergence has been achieved with a constant mixing 
factor, as we have found that the speed of convergence is considerably improved by 
using this method. This process is continued until the input and output potentials are in 
good agreement. 
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We have found that the method can give rise to instabilities in the charge density 
when using certain sizes of basis sets, either in the embedding potential expansion or in 
the number of LAPWS. The reason for this is as yet not fully understood, but we have 
encountered similar problems in surface calculations. At  present, the problem is essen- 
tially avoided via trial and error. 

4. AI-Ni(001) junction 

As an example of the method, we apply it to the case of an ideal AI-Ni(001) interface to 
see how an s-p bonded metal joints onto a transition metal. The true lattice constants 
of A1 and Ni, both of which have the face-centred cubic structure, are 7.600 au and 
6.645 au, respectively. We use a lattice constant of 7.072 au for both materials, giving a 
square two-dimensional interface unit cell of side 5.000 au. One layer each of A1 and 
Ni is considered in the interface region, using a basis set of 150 LAPWS, with three 
representative K-points (Cunningham 1974) in the irreducible part of the two-dimen- 
sional Brillouin zone used to construct the charge density in the self-consistent cycle. 
After 30 iterations, we achieve convergence to within 0.004 Hartree within each muffin 
tin. 

The density of states has been calculated at the points r(O.O.O.0) and X(O.5,O.O) of 
the two-dimensional Brillouin zone, which is related to the projected bulk face-centred 
cubic zone by a rotation of 45" about the k, axis (figure 5). Referring first to the density 
of states at r in the A1 muffin tin (figure 6(a)), we see an initial broad peak due to the 
A1 s-p band and then a flat section from the overlap of the Ni s-p band inside the A1 
muffin tin. However, there is not much penetration of the Ni d bands into the A1 muffin 
tins. Most interesting is the peak at 0.192 Hartree, which lies in the nearly free-electron 
gap of the bulk Al. The density of states in the Ni muffin tin (figure 6(b)) also shows the 
same peak, but it is not so evident owing to the proximity of the Ni d bands, which we 
have found to correlate well with the calculated bulk Ni band structure at r . To investigate 

Figure 5.  Relationship of two-dimensional Brillouin zone (k :  , k i )  to the projected bulk 
face-centred cubic zone ( k 2 ,  k,,). 
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this further, the charge density for this state has been plotted (figure 6 ( c ) ) ,  which shows 
the localised state to be due to dzz orbitals on the Ni. It is therefore of A I  symmetry, and 
in fact lies in a band gap of the bulk Ni A 1  bands, as well as in the AI gap, proving that it 
is not a bulk Ni state. It is a true interface state in the sense of decaying exponentially 
into both materials, but the fact that most of its charge density is localised on the Ni 
suggests that it is akin to aNi  surface state. The electronic structure of the Ni(001) surface 
shows dZ2 surface states at r near the top and bottom of the A I  gap (Inglesfield and 
Benesh 1988) ,  and these presumably become the interface state of our calculations. The 
A1 is behaving almost like the vacuum as far as the Ni states are concerned, for energies 
in the A1 band gap. Turning now to the density of states at X in the A1 and Ni muffin tins 
(figures 7 ( a )  and 7(b ) )  reveals a localised state of energy 0.12 Hartree on the Ni, which 
again lies in a bulk A1 band gap. The charge density of the state (figure 7 ( c ) )  shows it to 
be due to either d,, or d, orbitals on the Ni (the program symmetrises the charge density 
and so we cannot say which). Finally, the density of states at M (figures 8(a )  and 8 ( b ) )  
reveals a localised state at energy 0.216 Hartree, which is a dZ2 state on the Ni (figure 
8 ( c ) )  of Z1 symmetry. This state lies in a Z1 symmetry gap in the Ni and below the Z1 
bands in A1 (the states at this energy in A1 are of Z 3  symmetry); so it cannot leak away 
into travelling waves in either substrate. The situation is therefore similar to before, with 
the state localised on the interface layer of Ni atoms decaying exponentially into the Al. 
Apart from these features, we find that the density of states is very similar to that in the 
respective bulk materials, indicating little interaction between the A1 and Ni. This is in 
agreement with experimental data for this interface (Fargues et a1 1985), which shows 
that there is only weak 3d-sp interaction and that the interface is indeed abrupt as we 
have assumed. 

5. Conclusions 

We have presented a new way of determining interface electronic structure, which can 
be readily added to any existing slab program. The benefits are obtained both in more 
physically realistic results and in computational efficiency when compared with the more 
usual slab superlattice techniques. The embedding potentials ensure that the calculated 
states are correctly broadened and allow interface states to be easily distinguished from 
the bulk band structure. At  present, we are not able to calculate total energies at the 
interface, but this is planned for future work. Such calculations would be useful for 
comparison with experimetnal data on interface adhesion, such as that given by Mar- 
tensson et a1 (1988) .  
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